Perron-Frobenius Theorems

Weikai Chen, 2021/03/16

This is a lecture note for Marxian Economic Thoery, a course at Renmin University of China.

In this note, we will discuss the *Perron-Frobenius Theorem*, which is one of the most powerful tools on nonnegative/positive matrices and the workhorse in mathematical Marxian economics. I assume that the reader are familiar with <u>basic linear algebra</u>.

This Note is written in **Pluto Notebook**, a reactive notebook for Julia.

Perron-Frobenius Theorems Nonnegative and Positive Matrices Notations Indecomposable Matrices Eigenvalues and Eigenvectors of Nonnegative Matrices The Perron-Frobenius Theorem

Max-min and Min-max Characterization Productive Matrice Appendix: The proof of the Perron-Frobenius Theorem

Nonnegative and Positive Matrices

Notations

In this note we use the following notations:

- A matrix is *positive*, A > 0, if and only if $a_{ij} > 0$ for all i, j.
- A matrix is semi-positive, $A \geq 0$, if and only if $a_{ij} \geq 0$ for all i, j and $A \neq 0$.
- A matrix $A \geqq 0$ if it is nonegative.

As a vector can be taken as a speical matrix ($1 \times k$ or $k \times 1$ matrix), the above notations apply to vectors.

About the dimensions: By default, a matrix is $n \times n$ and vector $n \times n$ or determined by the context. For example, the vector v in vA is by default a row vector, while x is a column vector in Ax.

Example 1: Linear economy (A, ℓ)

Nonnegative matrices arise in many fields. In *Marxian Economic Theory*, it is used in the model of *linear economy* $\mathcal{E}(A, \ell)$.

Assume that there are n goods in the economy, and each column of the matrix A represents a production process.

$$a^j \oplus \ell_j \mapsto e_j$$

Specifically, a_{ij} is the amount of good i used in the production of 1-unit of good j. The row vector ℓ is the direct labor input, i.e., ℓ_j is the labor required in the production of 1-unit of good j.

The nonnegative matrix A is called an *input-output matrix*. Usually, we assume the input-output matrix A is *productive* and *indecomposable*, which will be discussed later.

Example 2: Markov Chain

Suppose that there are n states, and the probability of jumping from state j to state i is given by $p_{ij} \ge 0$, then

$$\sum_{i=1}^n p_{ij} = 1, ext{ for all } j$$

The nonnegative matrix $P = (p_{ij})$ is called a *stochastic matrix*.

Indecomposable Matrices

A square matrix A is *decomposable* if it can be reorganized by performing the same permutation on the rows and the columns into the form of

$$\begin{bmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{bmatrix}$$

where $oldsymbol{A_{11}}$ and $oldsymbol{A_{22}}$ are square.

For example, if one column of the matrix A is zero vector, say $a^1 = 0$, then A is decomposable.

An equivalent definition: if the set $\{1, \ldots, n\}$ can be partitioned into two disjoint subsets I and J such that $a_{ij} = 0$ for all $i \in I, j \in J$, then A is decomposable.

A square matrix A is said to be *indecomposable* if it is not decomposable. In the context of Markov chains, it is also called *irreducible*.

Note that if a nonnegative matrix A is indecomposable, then it must be semi-positve, $A \geq 0$.

If A is indecomposable, the so is the transpose A'.

Some Preliminary Properties

• If A>0, $x\geq 0$, then Ax>0.

• If $A \ge 0$ is indecomposable, $x \ge 0$, then $Ax \ge 0$. For if $Ax = \sum_i^n x_i a^i = 0$, and $x_i > 0$, then $a^i = 0$ and A is decomposable.

Eigenvalues and Eigenvectors of Nonnegative Matrices

The Perron-Frobenius Theorem

Theorem

Let $A \geq 0$ be indecomposable, then

(1) A has a positive eigenvalue $\lambda(A)>0$ associated with a positive eigenvector v>0

$$Av = \lambda(A)v$$

(2) If $u\geq 0$ is an eigenvector, then it has eigenvalue $\lambda(A)$, and u>0 is a multiple of v.

(3) If α is any eigenvalue of A, then $|\alpha| < \lambda(A)$.

(4) If $A \geq B \geqq 0$ then $\lambda(A) > \lambda(B)$. Moreover, if $A \geqq B \geqq 0$ and $\lambda(B) = \lambda(A)$, then B = A.

Statement (1) and (2) mean that A processes a *unique* nonnegative eigenvector (up to a scalar), and its associated eigenvalue is positive. We call this unique eigenvalue $\lambda(A)$ the **Frobenius root** of the nonnegative matrix A.

Then (3) means that the Frobenius root is the largest eigenvalue, and (4) implies that the Frobenius root is an *increasing* and *continuous* function of the matrix.

If $A \ge 0$ without the assumption of indecomposability, then $\lambda(A) \ge 0$ and $v \ge 0$. Similarly, (3) and (4) hold with weak inequality.

Moreover, if
$$A = egin{bmatrix} A_{11} & A_{12} \ A_{21} & A_{22} \end{bmatrix}$$
 where A_{11} is square. Consider $B = egin{bmatrix} A_{11} & 0 \ 0 & 0 \end{bmatrix}$ then $\lambda(A_{11}) = \lambda(B) < \lambda(A)$

There are many different ways to prove this theorem. I present one of them using the fixed point theorem in the last section. Next let's first look at some examples.

```
A = 2×2 Matrix{Float64}:
    0.5    0.2
    0.1    0.6
1 A = [0.5    0.2
    2     0.1    0.6]
```

```
Frobenius (generic function with 1 method)
```

```
1 function Frobenius(A)
2 # a function returing the Frobenius root and an associated positive eigenvector
3 evals, evecs = eigen(A)
4 root, arg = findmax(evals)
5 vector = abs.(evecs[:,arg])
6 return (root, vector)
7 end
```

> (0.7, [0.707107, 0.707107])
1 λ_A, v_A = Frobenius(A)

```
B = 2×2 Matrix{Float64}:
    0.4    0.2
    0.1    0.6
1 B = [0.4    0.2
    2    0.1    0.6] ## B < A</pre>
```

> (0.673205, [0.59069, 0.806898])
1 λ_B, v_B = Frobenius(B) # lambda(B) < lambda(A)</pre>

As A' has the same eigenvalues as A, we have $\lambda(A') = \lambda(A)$. Then

$$A'v=\lambda(A')v=\lambda(A)v$$

and therefore

$$v'A = \lambda(A)v$$

> (0.7, [0.447214, 0.894427])
1 λ_At, v_At = Frobenius(A') # labmda(A') = lambda(A)

```
1×2 adjoint(::Vector{Float64}) with eltype Float64:
0.31305 0.626099
1 v_At' * A #v'A
```

```
1×2 adjoint(::Vector{Float64}) with eltype Float64:
0.31305 0.626099
1 \lambda_A \times v_At' # lambda(A) \times v', the same result
```

Let A be nonnegative, indecomposable, and $\lambda(A)$ its Frobenius root, we have

• For an $x \ge 0$,

$$egin{aligned} Ax &\leq sx \Rightarrow \lambda(A) \leq s \ Ax &\geq sx \Rightarrow \lambda(A) \geq s \end{aligned}$$

• For an $x \ge 0$,

$$egin{aligned} Ax \leq sx \Rightarrow \lambda(A) < s \ Ax \geq sx \Rightarrow \lambda(A) > s \end{aligned}$$

The proofs of these four statements are identical. The readers are encouraged the prove them as an exercise. Below we present only the proof of the last one.

Hint

If $oldsymbol{A}$ is nonnegative, without the assumption of indecomposability, then we have

• For an x > 0,

$$egin{aligned} Ax &\leq sx \Rightarrow \lambda(A) \leq s \ Ax &\geq sx \Rightarrow \lambda(A) \geq s \end{aligned}$$

• For an $x\geqq 0$,

$$egin{aligned} Ax < sx &\Rightarrow \lambda(A) < s \ Ax > sx \Rightarrow \lambda(A) > s \end{aligned}$$

Max-min and Min-max Characterization

Let A be nonnegative, indecomposable and $\lambda(A)$ its Frobenius root. It is immediately from the above observations that

- if w>0, $Aw \leqq \lambda(A)w$, then $Aw=\lambda(A)w$
- if w > 0, $Aw \geqq \lambda(A)w$, then $Aw = \lambda(A)w$

In other words, it is impossible to have

$$Aw \leq \lambda(A)w$$

or

 $Aw \geq \lambda(A)w$

for any w > 0. Then, $\lambda(A)$ cannot be the minimum nor the maximum of the ratio $\frac{(Aw)_i}{w_i}$.

Theorem

Let A be nonnegative, indecomposable and $\lambda(A)$ its Frobenius root. Let w > 0, then either

$$\min_i rac{(Aw)_i}{w_i} < \lambda(A) < \max_i rac{(Aw)_i}{w_i},$$

or

$$\min_i rac{(Aw)_i}{w_i} = \lambda(A) = \max_i rac{(Aw)_i}{w_i}$$

w = ▶[0.2, 0.5]

For example, consider the w>0 above, then

- the minimum of $\frac{(Aw)_i}{w}$ is 0.64;
- the maximum of $\frac{w_i}{w_i}$ is 1.0;
- while $\lambda(A) = 0.7$ is in between.

▶[1.0, 0.64] 1 (<u>A</u> * <u>w</u>) ./ <u>w</u> # (Aw)_i / w_i

min = 0.64
1 min = minimum(<u>A</u> * <u>w</u> ./ <u>w</u>)

max = 1.0
1 max = maximum(<u>A * w ./w</u>)

Productive Matrice

A nonnegative square matrix is said to be *productive* if there exists $x \geq 0$ such that

$$x - Ax \ge 0$$

Exercise.

Let $A \geq 0$ be indecomposable. Show that A is productive if and only if $\lambda(A) < 1$.

Let $A \ge 0$ be indecomposable, then $s > \lambda(A)$ if and only if $(sI - A)^{-1} > 0$.

Proof

• (\Rightarrow) By the Perron-Frobenius Theorem, $\lambda(A)$ is the largest eigenvalue of A, i.e., the largest root of the equation

$$\det(\lambda I - A) = 0$$

Then $s>\lambda(A)$ is not a root, i.e., $\det(sI-A)
eq 0$. Therefore, $(sI-A)^{-1}$ exists.

Next, we show that $(sI - A)^{-1} > 0$. It is sufficient to show that $z = (sI - A)^{-1}y > 0$ for any $y \ge 0$. Suppose that z has some negative components,

$$z = egin{bmatrix} -x_1 \ x_2 \end{bmatrix}$$

where $x_1 > 0$ and $x_2 \geqq 0$, then

$$egin{bmatrix} sI-A_{11}&-A_{12}\ -A_{21}&sI-A_{22} \end{bmatrix} egin{bmatrix} -x_1\ x_2\end{bmatrix} = y$$

implies $-(sI-A_{11})x_1-A_{12}x_2\geqq 0$. Then

$$(sI-A_{11})x_1 \leqq -A_{12}x_2 \leqq 0 \Rightarrow sx_1 \leqq A_{11}x_1$$

and therefore $\lambda(A_{11}) \geqq s$, a contradiction to the fact that $\lambda(A_{11}) \leqq \lambda(A) < s$. Therefore, we have $z \geqq 0$.

Suppose that \boldsymbol{z} has zero components, then

$$egin{bmatrix} sI-A_{11}&-A_{12}\ -A_{21}&sI-A_{22} \end{bmatrix} egin{bmatrix} 0\ x_2 \end{bmatrix} = y$$

where $x_2 > 0$. Then

$$-A_{12}x_2\geqq 0\Rightarrow A_{12}x_2=0$$

and then $A_{12} = 0$ since $x_2 > 0$, violating the indecomposability of A. Therefore, z > 0.

• (\Leftarrow) By $(sI-A)^{-1}>0$, let y>0 and $x=(sI-A)^{-1}y>0$, then

$$y = (sI - A)x = sx - Ax > 0$$

That is, we have some x > 0 such that sx > Ax, then $s > \lambda(A)$.

Applying the above theorem to the case with $\lambda(A) < 1$ when A is productive, we have

Take-Home Message

If a nonnegative matrix A is indecomposable and productive, then $(I - A)^{-1} > 0$.

Moreover,

$$(I-A)^{-1} = I + A + A^2 + \dots = \sum_{k=0}^{\infty} A^k$$

holds when $\lambda(A) < 1$, as a generalization of

$$rac{1}{1-q}=1+q^2+\dots=\sum_{k=0}^{\infty}q^k, \quad ext{for } |q|<1$$

Appendix: The proof of the Perron-Frobenius Theorem

Theorem

Let $A \geq 0$ be indecomposable, then

(1) A has a positive eigenvalue $\lambda(A)>0$ associated with a positive eigenvector v>0

$$Av = \lambda(A)v$$

(2) If $u \ge 0$ is an eigenvector, then it has eigenvalue $\lambda(A)$, and u > 0 is a multiple of v.

(3) If α is any eigenvalue of A, then $|\alpha| < \lambda(A)$.

(4) If $A \geq B \geqq 0$ then $\lambda(A) > \lambda(B)$. Moreover, if $A \geqq B \geqq 0$ and $\lambda(B) = \lambda(A)$, then B = A.

We first establish (1) using the following fixed point theorem.

Let $\Delta = \{x \ge 0 \mid x \in \mathbb{R}^n \text{ and } \|x\| = 1\}$, and $f : \Delta \to \Delta$ be a continous function. The **Brouwer** fixed point theorem ensures that f has a fixed point, i.e., there exists $x_0 \in \Delta$ such that $f(x_0) = x_0$.

For a nonnegative and indecomposable matrix A, we first show that there exist a positive eigenvalue $\lambda > 0$ such that

$$Av = \lambda v$$

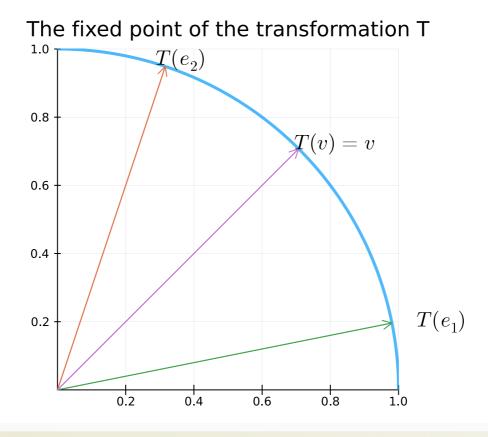
Since A is indecomposable, for any $x \ge 0$, we have $Ax \ge 0$, then $\|Ax\| > 0$. Define $T: \Delta \to \Delta$ by

$$T(x)=rac{Ax}{\|Ax\|},orall x\in\Delta$$

then T is continous and there exists a fixed point $v \in \Delta$ such that

$$T(v) = rac{Av}{\|Av\|} = v \Rightarrow Av = \lambda v$$

where $\lambda = \|Av\| > 0$.



▲ lims should be a Tuple, not StepRangeLen{Float64, Base.TwicePrecision{Float64}, Base.TwicePrecision{Float64}, Int64}.

Next, we show that v must be positve by the proof of contradiction. Without loss of generality, suppose on the contrary that v has some zero components,

$$v = \begin{bmatrix} v_1 \\ 0 \end{bmatrix}$$

where $v_1 > 0$. Then $Av = \lambda v$ yields

$$\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} v_1 \\ 0 \end{bmatrix} = \begin{bmatrix} \lambda v_1 \\ 0 \end{bmatrix}$$

Thus $A_{21}v_1 = 0$, so $A_{21} = 0$, violating the indecomposability of A.

For (2), let w>0 be an eigenvector of A' associated with $\lambda(A')=\lambda(A)$. Suppose that $Au=\lambda_u u$, then

$$\lambda_u w' u = w' A u = \lambda(A) w' u$$

so $\lambda_u = \lambda(A)$ since w'u > 0. Then u > 0 by the same argument (showing v>0) above.

Suppose that u is not a multiple of v, then there exist $k \in \mathbb{R}$ such that $u + kv \ge 0$ has zero component. Note that u + kv is an eigenvector associated with $\lambda(A)$, so u + kv > 0 contradicted.