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This is a lecture note for Marxian Economic Thoery, a course at Renmin University of China. This note
is mainly for senior or graduate students in econ major, so I assume that students have taken a course
in linear algebra before.

The purpose of this note is to review  the basic concepts and methods in linear algebra and prepare the
students for the Perron-Frobenius Theorems  about positive and nonnegative matrices. Nonnegative
matrices arise in many areas such as economics, population models, graph theory, Markov chains and
so on. The Perron-Frobenius theory is one of the most powerful tools on nonnegative matrices and the
workhorse in mathematical Marxian economics. Given its importance and the fact that it is new to
most students, I will discuss P-F theorems in a separate note.

This Note is written in Pluto Notebook, a reactive notebook for Julia.

Linear algebra studies the linear transformation  on vector spaces, which can be represented by
matrix. We will focus on the -dimensional Euclidean space , though most results discussed in this
note can be easily generalized.

Vectors in 
A vector in  is a list with  real number. For example,  is a vector in . Let 

 and , de�ne vector addition  and scalar
muliplication  by the following:

x Float64[1.5, 2.0] = 

y Float64[0.5, 2.0] = 

x = [1.5, 2.0]⋅
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z Float64[2.0, 4.0] = 

w Float64[3.0, 4.0] = 

Now let's plot those vectors.

Linear Combinations
Given a set of vectors  in , the new vectors we can create by performing linear
operations are called linear combinations  of .

That is,  is a linear combination of  if

In this context, the values  are called the coe��cients  of the linear combination.

The set of these linear combinations  is called the span  of , denoted by 

Note that the co��cients of a linear combinbation  may not be unique. If for
any , the coe��cients are unique, then the set of vectors  are said
to be independent.

z = x + y⋅

w = 2*x⋅



A set of vectors  is dependent  if they are not independent. Then one of them can be
expressed as the linear combination of the rest.

A set of vectors  is a basis  for the span  if it independent.

It can be shown that

1. If , then .
2. If  is independent, then .

Therefore,  is a basis for  if and only if it is linearly independent and .

Below is an example of basis for , called the standard basis:

For any , we can write

Inner Product and Norm
The inner product  of vectors  is de�ned as

The inner product is also denoted by .

Two vectors are called orthogonal  if their inner product is zero.

The norm  of a vector  represents its “length” (i.e., its distance from the zero vector) and is de�ned as

The expression  is thought of as the distance between  and .
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dot(x,y) # the inner product of x and y⋅

x'*y  # give the same result⋅



2.5

2.5

1.0

Matrices
A Matrice is a rectangular array of numbers.

is called an  matrix. If , then  is called square.

The matrix formed by replacing  by  for every  and  is called the transpose  of , and denoted 
or . If , then  is called symmetric.

For a square matrix , the  elements of the form  for  are called the principal diagonal.

 is called diagonal  if the only nonzero entries are on the principal diagonal, i.e.,  for all .

A diagonal matrix  is called the identity matrix, and denoted by  if  for all .

Denote each column of the matrix  as a vector by  for , then A can be rewritten using
these column vectors  as

Similarly we can write the matrix  using row vectors

Matrice Operation
Just as was the case for vectors, a number of algebraic operations are de�ned for matrices.

norm(x)  # the norm of vector x⋅

sqrt(x'*x) # give the same result⋅

norm(x-y) # the distance between x and y⋅



Scalar multiplication and addition are immediate generalizations of the vector case:

and

In the latter case, the matrices must have the same shape in order for the de�nition to make sense.

A 2×2 Array{Float64,2}: 
 3.0  1.0 
 2.0  5.0

 = 

B 2×2 Adjoint{Float64,Array{Float64,2}}: 
 3.0  2.0 
 1.0  5.0

 = 

C 2×2 Array{Float64,2}: 
 6.0   3.0 
 3.0  10.0

 = 

We also have a convention for multiplying  matrix with vector.

For a square matrix  and a column vector , we have

Another usefull form of  is

A = [3.0 1
     2 5]

⋅
⋅

B = A'⋅

C = A + B⋅



which is a linear combination of the set of column vectors .

a1 Float64[3.0, 2.0] = 

a2 Float64[1.0, 5.0] = 

b Float64[6.5, 13.0] = 

Float64[6.5, 13.0]

Matrix and Linear Transformation

Linear transformation and matrix representation
A function  is a linear  if for all  and all scalar  and ,

For any  matrix , it is easy to check that the function  is linear.

In e�fect, a function  is linear if and only if  there exists a matrix  such that  for all .

a1 = A[:,1] # the first column⋅

a2 = A[:,2] # the second column⋅

b = A*x⋅

a1 * x[1] + a2 * x[2] # the same result ⋅



Proof

Inverse of linear transformation and inverse matrix
What is the range of the function ?

Since , the range is just the span of the columns, i.e.,

Moreover, if the columns are linearly independent, then the range is . That is, for any , there
exist a unique  such that . Then we say the function  is invertable, and
denote its inverse function by .

It could be veri�ed that  is also linear and thus there exist a matrix  such that

We called the matrix  the inverse matrix  of , and by de�nition we have

and then

2×2 Array{Float64,2}: 
 0.384615  -0.0769231 
-0.153846   0.230769

Float64[1.5, 2.0]

inv(A) # the inverse of matrix A⋅

inv(A) * b  # x = inverse(A)*b ⋅



Composition of linear transformation and matrix
multiplication
If  and  are two matrices, the linear transformation  mapping from  to ,
while  from  to . Then the composition  de�ned by

is also linear, and thus can be represented by a  matrix . We say  is the multiplication of 
and , i.e., .

How can we calculate ? If we write the matrices as

then their product  is formed by taking as its -th element the inner product of the -th
row of  and the -th column of .

That is,  where

D 2×2 Array{Float64,2}: 
 10.0  11.0 
 11.0  29.0

 = 

Matrix and System of Linear Equations
O�ten, the numbers in the matrix represent coe��cients in a system of linear equations

The objective here is to solve for the “unknowns”  given  and .

This system of equations can be written as

D = A * B⋅



or

Therefore, to solve  is to �nd the coe��cients of the linear combination.

Note

(1) If the columns of  are linearly independent, then their span is , so for any  there is a
unique solution.

(2) If the columns of  are linearly dependent, then the span is a subset of . If  is in the span,
then there are multiple solutions; otherwise, there is no solution.

Float64[1.5, 2.0]

Determinant
Given a square matrix , how can we tell if its columns are linearly independent or not?

There is a function  or  called the determinant  assigning a real number to any square
matrix , which could help us answer the above question.

In e�fect,  if and only if the columns of  are linearly indpendent.

When , let

we have .

The determinant of a matrix determines  whether the column vectors are linearly independent or
not.

determinant 13.0 = 

13.0

A\b # solve the system of equations Ax = b⋅

determinant = det(A) # the determinant of matrix A⋅

A[1,1] * A[2,2] - A[1,2] * A[2,1] # same result⋅



I won't dig into details for the calculation of determinants in general. Instead, let's look at its
geometric intuition.

Take the example of . Note that  and . The linear transformation 
 transforms the square spanned by  and  into the parallelogram spanned by  and 

.

The determinant  is the area scale factor of the transformation . That is

Since the area of the square is 1,

In this case, the area of the parallelogram is  13.0. Therefore, the linear transformation 
 stretch  the space with scale factor 13.0.

If  and  are linearly dependent, the area of the 'parallelogram' becomes zero, i.e., . If
the columns of  are linearly dependent, the linear transformation  compresses  the space
into a lower-dimensional space, a line in this case.

Note that the determinant could be negative when the linear transformation �lips  the space. For
example,



A_flip 2×2 Array{Int64,2}: 
 1  3 
 5  2

 = 

-13.0

13.0

Eigenvalue and Eigenvector
Let  be an  square matrix.

If  is scalar and  is a non-zero vector in  such that

then we say that  is an eigenvalue  of , and  is an eigenvector.

Thus, an eigenvector of  is a vector such that when the map  is applied,  is merely
scaled.

Eigen{Float64,Float64,Array{Float64,2},Array{Float64,1}} 
values: 
2-element Array{Float64,1}: 
2.267949192431123 

A_flip = [1 3; 5 2]      # compare it with A = [3 1; 2 5]⋅

det(A_flip)  # det(A_flip) = -det(A)⋅

det(A') # det(A') = det(A)⋅



5.732050807568878 
vectors: 
2×2 Array{Float64,2}: 
-0.806898  -0.343724 
 0.59069   -0.939071

v Float64[-0.806898, 0.59069] = 

Float64[-1.83, 1.33966]

Float64[-1.83, 1.33966]

u Float64[-0.343724, -0.939071] = 

Float64[-1.97024, -5.3828]

Float64[-1.97024, -5.3828]

The next �gure shows two eigenvectors, , and their images under the linear transformation, 
and .

evals, evecs = eigen(A)  # find all eigenvalues and corresponding eigenvacters⋅

v = evecs[:,1] # one eigenvector⋅

A * v  # Av⋅

evals[1] * v # lambda_1 * v⋅

u =  evecs[:,2] # another eigenvector⋅

A * u # Au⋅

evals[2] * evecs[:,2] # lambda_2 u⋅



Suppose that , then the system of equatins

has a non-zero solution. Or the columns of the matrix  is linearly dependent. Therefore,

The next �gure shows the plot of the characteristic polynominal   as a function of .



begin
    Determinant(λ;matrix=A) = det(λ * Matrix(I,2,2) - matrix)
    λ = 1:0.01:7; 
    determinant_λ = [Determinant(i) for i in λ];
    plot(λ, determinant_λ,legend = false, framestyle = :origin)
    plot!(xlab = L"\lambda", ylab = L"\det(\lambda I- A)")
end
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